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ABSTRACT 

This  paper consists  of two  parts.     In the  first,   a  critical 

analysis  of well-known procedures   for the computation of one- 

dimensional   shocked flows  is  made,   in order to   show  the incon- 

veniences  of computing  finite  differences across  a discontinuity and 

to prove  that the use of the   enuations  of motion in  conservation form 

does  not make  the  results  any more  accurate.      In the second,   a 

technique  is  developed to  treat  one-dimensional  inviscid problems 

and it is  applied to the  problem  of an accelerating  piston.      Practical 

and safe ways  to predict the   formation of a shock and to  follow it 

up in  its  evolution are   jiven. 

This research has been conducted under Contract No.   Nonr 839(38) 
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the  support of the Advanced Research Projects Agency  under Order 
No.   529 through the Office  of Naval Research. 

Professor  of Aerospace  Engineering. 



Introduction 

The numerical treatment of one-dimensional problems has been 

the object of a great number of papers, mostly intended to provide theo- 

retical and experimental comparisons between different numerical tech- 

nique«. Such comparisons have failed to provide a positive contribution to 

the state of the art.    They have been unable,for example, to point out why 

the results of the computations are generally affected by spurious oscilla- 

tions, and why their accuracy is so poor, although some qualitative agree- 

ment with exact solutions, when available, can be observed. 

In Ref.  la general line of attack for gas dynamics problems has 

been presented, the philosophy of which is that computations can be per- 

formed in any number of space dimensions and time with as great an 

accuracy as desired.    Such a goal can be achieved not only without increas- 

ing the computational time beyond unacceptable limits but rather reducing 

it by at least one order of magnitude. 

A test of the technique outlined in Ref.  1 is given here for one- 

dimensional problems.   A detailed analysis of some of these problems is 

necessary in order to explain the physical subtlety of certain non-linear 

phenomena and of their interpretation from the view point of numerical 

analysis. 

In the first part of the paper, the problem of a steady shock sepa- 

rating two regions of uniform flow is examined in an attempt to explain the 

origin of certain well-known numerical difficulties.   In the second and third 

parts, an increasingly sophisticated technique is introduced, to show how 

such difficulties can be, one by one, eliminated.   A demonstration of how 

the technique can be applied to very complicated one-dimensional inviscid 

problems will follow in another paper. 



1.   Shocks and the equations in divergence form 

In the typical one-dimensional problem analyzed in the literature, 

a shock proceeds, at a constant speed, into a gas at rest.    The region 

behind the shock is, then, uniform.   The flow pattern can be imagined to 

be produced by a piston suddenly set into motion at a constant speed 

(Fig.  1).    The shock is not assumed to be a discontinuity; the numerical 

techniques intend to provide a way of representing the shock as a fast, 

but continuous, transition between two constant states. 

If the approach outlined in Ref. 1 were used for this problem, the 

flow field would be divided into two regions of continuous flow and the 

shock confined to the common boundary.   Then the problem becomes 

trivial; in both regions separated by the shock the flow is uniform, all 

space derivatives vanish identically and consequently the time derivatives 

vanish identically.    There is no doubt that,  regardless of the technique 

t I 

FIG. I   FUW   PRODUCED    BY   A    PISTON    MOVING 
A   CONSTANT   SPEED 

AT 



being used, the two constant states are maintained.    As far as the shock 

itself is concerned, a single application of the Rankine-Hugoniot conditions 

provides the solution at any instant of time since the shock velocity is con- 

stant.    In the first part of this paper, however, we will re-examine the 

simple flow problem outlined in Fig.   1 to discuss the basic philosophy of 

the "smeared shock" approach and to justify our choice of the other approach 

as outlined in Ref.  1. 

There is no doubt that if one could handle shocks by the same tech- 

nique used in regions of continuous flow, the general logic of a computa- 

tional program would be highly simplified,  particularly when a flow is 

expected to be traversed by shocks in both directions and when the problem 

depends on more than one space variable.    However, anyone who has some 

experience in computing by the method of characteristics knows that, as 

soon as the characteristics coalesce and a shock builds up, the method 

breaks down.    The only way the computation can be continued consists 

of fitting the shock as a discontinuity,      separating two regions of continu- 

ous flow where the method of characteristics is applicable.    The physical 

nature of the shock is reflected in the numerical procedure by the fact 

that each shock point is reached by three characteristics, two in the super- 

sonic region and one in the subsonic region, plus the particle path in the 

supersonic region (Fig. 2) (the Mach numbers being computed from the 

velocities relative to the shock).    Therefore, if one pretends to ignore the 

shock, one is forced to face a redundancy of data which are inconsistent as 

long as no jump is permitted. 

It is rather surprising that so much effort has been spent against 
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the evidence offered by the method of characteristics and even against a 

basic principle of mathematics, as we will see later on.    There is appar- 

ently only one possible explanation, which we will try to present here, as 

plainly as possible. 

1.1  The smearing out of a shock according to von Neumann and Richtmyer. 

Let us consider the problem in its historical development.    In 1950, 

von Neumann and Richtmyer, trying to solve the problem of shocked flows by 

numerical techniques, found the amount of labor involved too great, even 

using automatic computers (in 1950, programming for a machine like ENIAC 

was extremely cumbersome; FORTRAN was invented many years later). 

Von Neumann and Richtmyer had in mind multidimensional shocked flows. 

A treatment similar to the one outlined in Ref.   1 was, at that time, beyond 

reach, as they stated: "Shock calculations by direct application of the Hugoniot 

equations would ordinarily be prohibitively difficult, even for rapid, auto- 

matic computers." (Ref.  2) Consequently, they suggested a device,inspired 

J 
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by the physical behavior of a gas crossing a shock.    When viscosity and 

heat conduction are taken into account,  shocks are naturally smeared 

out and can be described as a continuous transition.    The larger the vis- 

cous effects, the wider the transitional region.    It is known that, except 

when the gas is rarefied, this region is still too thin to be perceivable. 

However, von Neumann and Richtmyer thought that an artificial viscosity 

could be forced into the equations of motion in such a way that (i) the 

shock transition would be spread out over, say, a couple of mesh intervals 

(which meant to have an unrealistically large viscosity in that region), but 

also (ii) managing to keep the viscous effects negligible in the rest of the 

computational mesh.    The suggested artificial viscosity for one-dimen- 
2 

sional problems depended on a term containing u  . 

The aim of the suggested device is to compute inviscid flows with 

numerical methods apt to approximate continuous flows, without having to 

make special provisions for shocks in advance, but reaching a good approxi- 

mation to the inviscid flow solution, except on a two mesh interval bracket- 

ing each shock. 

1. 2   Lax's technique;  artificial viscosity and the equations in 

conservation form. 

In 1954, Lax (Ref.  3) suggested two modifications to the above 

approach.    The first had to do with a way of introducing artificial viscosity. 

To see the idea without complications, consider the equation 

ft = gx (i) 

Let the points to be computed ( nodal points) be equally spaced along the 

x-axis,  so that their abscissae are x    =nAx(n=l,2,3,....).    Let k 

denote a value of time t,   = k A t.    Let f^ denote the value of f at x = x k n n 
k k and t = t, .   Approximate g    by centered differences (g   . i - g     ,)/2 hx 



but« instead of writing 

k k 
fk+1 = fk +  g"+1  "  g"-1 (2) 
n n      ~"    2 Ax 

as one would do by a straight forward application of Euier's integration 

rule, let us write 

^      + ^ k k 

'        n-   
"n "2        ~ T 2 Ax 

g„.i   "  S Jc+1        n+1        n-1   ,   Bn+1       ön-l   .. .,, 
C       =   9   +   T-KZ    At (3) 

In other words, the initial value of f used to approximate the time deriva- 

tive at the n-th point is not the value of f at the  n-th point but the average 

of the values of f at the two neighboring points. 

On the other hand, if we consider the equation 

f    =  g    +  vf (4) 
t &X XX x     ' 

ix2 

with 

approximate f      by (i   . i   +*i   -2fj/Ax,   and use an integration 

scheme similar to (2), we obtain (3) again.    Terms containing second order 

spatial derivatives,  such as  vf     ,   appear in the Navier-Stokes equations, 

where v is proportional to the kinematic  viscosity of the gas (in non-dimen- 

sional form,   v is the inverse of a Reynolds number).    Therefore, we may 

consider (3) as a formula solving a problem of motion, somehow affected by 

a pseudo-viscosity whose Reynolds number is of the order of 1/v. 

The second innovation in Lax's technique consisted of approximating 

by a finite-difference scheme not the well-known Euier's equations 

Dt+Upx + pUx   =   0 

p^ + puux + Px = 0 (6) 

S^ + u S    = ,0 t x 



but a system written in what is called a divergence form, or conservation 

form. 

Such a system can be obtained by algebraic manipulation of (6) or 

directly from the equations expressing conservation of mass, momentum 

and energy.   Let 

m  =   pu 

2 
E  = 

1 1 
P + -JDU 

1 1  m 
P + 1T- 

(7) 

(8) 

H (   y        L 1       2\      nW   „     Y-l  m2\ 

p +   DU     =  (Y-l) E + hi £121 
2       P 

The conservation equations mentioned above can be written in the form: 

(9) 

(10) 

m 

nv 

E    = - H t x 

(H) 

and it is easy to see that (11) is equivalent to (6).   Formally, the system 

consists now of linear relations between first derivatives.    The system, how- 

ever, is obviously non linear since the dependent variables are related to one 

another by the non linear equations (7), (9), and (10). 

Note that (1) may represent all three equations of motion if  f  and g 

are considered as vectors, defined by 

(12) 

What happens if the motion is steady is remarkable (and, incidentally, 

the arguments and conclusions which follow are not limited to one-dimensional 

p m 

m .   g = " q 

E H 
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problems).    The left-hand sides of the equations vanish identically.    There- 

fore, the same is true of the right-hand sides.    And, of course, the state- 

ment holds wherever    the original equatious (11) are applicable, that is, 

throughout all region where the flow parameters are continuous and differ- 

entiable.    On the other hand, consider the Rankine-Hugoniot conditions 

across a shock, 

pl vl   =  P2V2 

pj y^ + pl  = P2 v2
2 + p2 (13) 

hl+Ivl     = hZ+lvZ 

where v is the velocity relative to the shock,   h is the enthalpy: 

h = -Xp £ (14) 

and the subscripts 1 and 2 refer to conditions on either side of the shock. 

In a steacy state, the velocity v coincides with u.    By using the definitions 

(7), (10) and (9), the Rankine-Hugoniot conditions can be written as 

ml   =  m2 

qj   = q2 (15) 

Hl   =  H2 

In other words, the quantities  m,   q,   and H (in physical terms, mass flow, 

momentum and total enthalpy) are continuous across a shock.   And since 

m    =0,q    =0,   H    =0  everywhere else,   m,   q,   and H are constant 
Jt JC Ä- 

throughout the flow.    It is obvious, then, that any finite-difference approxi- 

mation to the x-derivatives of m,   q,   and H vanishes identically, even if the 

nodes lie at opposite sides of a shock.   By using the equations in the form (11) 

their finite-difference counterparts can be used all throughout a shocked flow 

even when the individual components of mass, momentum and total enthalpy. 
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that is, density, velocity and pressure, are not continuous (and thus not 

differentiable) across a shock.    Let us hasten to say that a statement of 

this kind, although obviously true, is a deceiving one.    What it actually 

means is that if we compute a steady flow by finite-difference technique 

as if it were unsteady, and we use as initial conditions the correct steady 

flow, and we use the equations in conversation form, we find that all time 

derivatives are zero, and therefore we compute nothing at all.   The result 

is self-consistent but is trivial. 

It is surely a better result than what we would have got, had we 

ased a finite difference counterpart to (6) in the presence of a shock since 

finite-difference approximations to the space derivatives across a steady 

shock would generally provide finite values of the time derivatives, and 

therefore local changes in the physical parameters, a result which is 

inconsistent with the steady state assumption. 

The question is. Does then a set of finite-difference equations 

obtained from (11) give better results than a set obtained from (6) when 

the flow is not steady?   Lax himself did not attempt to prove anything of 

the sort;  he only advanced some hopeful conjectures.    Then he made some 

numerical work to try out his innovations.    Fig.  3    is a plot of the pres- 

sure distribution as described in Table V of Lax's paper,    (Ref. 3).    The 

theoretical distribution is a constant line, at p = 50,   followed by a con- 

stant line at p = 0.    The transition should occur approximately where indi- 

cated.    The figure shows a typical "qualitatively good" result.    Let us 

analyze it, however, keeping in mind that two questions must be answered, viz. 

(i) Is the transition replacing the shock sufficiently sharp?, and (ii) 

Does the conservation form of the equations solve the problem of computing 

across a shock? 

Two features of the figure should be considered carefully.    The 
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first is the number of mesh intervals along which the shock is spread. 

The second is a mild oscillation appearing in the high pressure side of the 

"shock" (to make it more evident, part of the plot has been redrawn at a 

larger scale in the upper part of the figure).    These two features are typ- 

ical of numerical effects which are unrelatable to the   physical nature of 

the flow.   We are going to discuss them in detail in the first part of this 

paper,  showing that the oscillation is the typical symptom of numerical 

trouble in attempting to deal with a discontinuity by "continuous" tech- 

niques, whereas the spreading of the transition over too many mesh 

points is the telltale of a gigantic artificial viscosity. 

Unfortunately, in Lax's procedure one effect cannot be studied with- 

out having the other as well, and conclusions cannot be easily drawn.     How- 

ever, one can grasp the idea by comparing Figs. 3 and 4 where some results 

obtained by Emery (Ref. 4) with the Lax scheme are replotted.    The curve at 

the left and the one at the right of Fig. 4 were obtained by using   At/Ax = .9 and 

At/Ax = .7,   respectively.    The curve of Fig.  3 corresponds to At/Ax = .25. 

In a real shock, for a given Mach number (not much higher than 4), the 

shock thickness 5  is roughly proportional to the inverse of the Reynolds 

number.   In Lax's scheme,(5) shows that the Reynolds number is propor- 

2 2 tional to At/Ax  .   Therefore, the product 6(At/Ax ) should be practically 

the same for all three cases if the artificial viscosity acts as a real viscos- 

ity.    Now,6/Ax is the number of intervals over which the "shock" is spread. 

This is due to the fact that the Euler's integration rule (2) is uncondi- 
tionally unstable and (3), as we have seen, contains artificial viscosity. 
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FIG. 4    PRESSURE   DISTRIBUTION    ACROSS   A   SHOCK,    AS 
COMPUTED     BY   EMERY.   USING    LAX'S   SCHEME 
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From the figures we find 

6/Ax At/Ax 6 (At/Ax2) 

12 .25 3 

5 .7 3.5 

4 .9 3.6 

From the      figures of the last column we can conclude that the 

effects of artificial viscosity on shock thickness are very similar to the 

effects of real viscosity.    Unfortunately, we can also see that the artificial 

Reynolds number per unit length is of the order of 1/Ax.    In practice one 

deals with intervals which cannot be smaller than» say, 1/50 of a typical 

reference length, lest the computational time increases beyond acceptable 

limits.    Therefore the artificial Reynolds number is, at most, of the order 

of 50. 

Figs.  3 and 4 show that the artificial viscosity plays a crucial role 

in damping out the oscillations and that an effective damping is obtained 

only if the artificial Reynolds number is extremely low, so that the transi- 

tion replacing the shock cannot be sufficiently sharp. 

1.3.   The Lax-Wendroff Technique. 

Reducing the artificial viscosity in Lax's scheme entails increasing 

the amplitude of the oscillations in the high-pressure side of the shock. 

Therefore we cannot evaluate whether the conservation form of the equation 

of motion is of any help in computing a flow which contains a sharp disconti- 

nuity.   For such an analysis, one needs a scheme which can work in the 

absence of artificial viscosity.    The scheme suggested by Lax and Wendroff 

in I960 (Ref. 5) seems to be aimed at increasing the accuracy,  and eliminating 

artificial viscosity, while maintaining the formulation of the equations in con- 

servation form, obviously in the hope that shocked flows could be treated 

without shock fitting. 
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The Lax-Wendroff scheme, in principle, depends on approximating 

the unknowns at a time t + At by a Taylor expansion truncated at the second 

order terms: 

f(t+ At) = f(t) +  ftAt + ^fttAt2 (16) 

expressing the time derivatives through space derivatives, making use of 

the equations of motion, and replacing the space derivatives by centered 

differences.    Lax and Wendroff have applied the scheme to the equations 

of motion formulated in conservation form.    In the one-dimensional case, 

(11) is the starting point.    Then (16) is used.    To compute f   ,   (1) is 

differentiated with respect to t: 

but 

tt = gtx 

gt = Jft  =  Jgx 

(where  J is the matrix whose determinant is the Jacobian of g with respect 

to f),   so that 

For no apparent reason,  (J g  )    is not resolved into 

^x  =  Jx8x +  J«xx <18) 

but is computed as 

/jk      +Jk       e
k ak Tk + Tk k k      \ 

which implies an averaging of J and,   thus, a higher truncation error than 

if (18) were used. 

We would like to mention in passing that the scheme suggested by (16) 

does not require the equations of motion to be cast in conservation form. 

From a practical point of view, it is more convenient to use Euler's 
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equations.    Recasting the equations of motion in conservation form is a 

cumbersome process, particularly when more than one space dimension is 

involved.   Auxiliary mappings of the physical space onto a computational 

space make the procedure even more complicated, if not impossible.   The 

Jacobian matrices in multi-dimensional problems not only are complicated 

but require a great amount of numerical computations which is avoided if 

Euler's equations are used.    In conclusion, a program based on the original 

Lax-Wondroff suggestion is more complicated (and consequently more 

oxposod to accidental mistakes), much more time consuming on the machine 

and loss accurate than a program applying (16) to Euler's equations. 

OJ course, these disadvantages would be largely balanced by the 

possibility of treating shocks as sharp transitions.   However, the equations 

in conservation form do not keep up to the hopes suggested by Lax's con- 

jectures.    Fig. 5 shows a typical result obtained by Lax and Wendroff.   Here 

the oscillations in the high-pressure side of the shock are much stronger 

than in Fig.  1.    The figure is borrowed from page 333 of Richtmyer and 

FIG. 5   VELOCITY   DISTRIBUTION    ACROSS   A 
SHOCK,   AS   COMPUTED BY   LAX AND 
WENDROFF 
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Morton's book (Ref. 6), where no explanation is given for the appearance of 

the oscillations.    It is only stated that the oscillations can be reduced by 

adding again an artificial viscosity to the equation of motion. 

1.4   Explaining the formation of wiggles. 

From the examolcs above it appears that wiggles tend to form in the 

high-pressure side of a shock, regardless of the computational technique 

being used,  unless artificial damping devices are used.     Here we attempt to 

explain the formation of such wiggles.   We are interested,  of course,   in a 

numerical scheme whose artificial viscosity,   if any,  is such that the shock 

is not spread over more than one mesh interval.   We consider a shock 

moving from left to right at a constant speed, W, and separating two regions 

of uniform flow.   Consider three points,  labeled n-l,n, and n+1 at the 

abscissae x-Ax,x,  and x+Ax (Fig. 6) and suppose that, when a certain 

computation is started,  the shock is somewhere between x-Ax and x. 

Even if we are willing to accept a continuous transition instead of the 

jump at the shock,  we must acknowledge that the numerical scheme is 

u 

/OU 

p 

U,/DU 
_J I  

X-AX    X   X+AX X 
(n-l)   (n) (n + H 

FIG. 6    DISCONTINUITIES    ACROSS 
A   SHOCK 
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unable to distinguish between such a transition and a jump,since both take 

place between two adjacent nodes and the values of the physical parameters 

are defined only at nodes.   Under these conditions, we can show how 

oscillations build up long before a steady state, when physically existing, 

can be reached. 

In the above problem, the three quantities m, q,  and H are 
*    _. 

higher at the left of the shock than at the right  .  The same may be said 

of p, p, u, and E.   Let F be any of these quantities and let Fig. 7a 

represent what the F-distribution should actually be at a certain time t. 

In the same figure,a set of Initial values for a numerical computation is 

also shown, at a discreet number of nodal points.   At all nodal points 

except A and B the results of a numerical computation are correct.    We 

are going to analyze the results of one computational step at points  A and 

B by assuming that 

|^ftt.At2|<  |ftAt| . (20) 

Such a condition can always be satisfied if At is chosen sufficiently small. 

Note then that the numerical approximations to the derivatives at A and B, 

as shown in Fig. 7b by the dotted lines, are negative;  according to (11), all 

quantities  F increase at A and B.   At t + At,   the actual F-distribution 

(where the shock moved somewhat ahead) and the computed F-distribution 

are as in Fig. 7c.   Now points C and D start being affected by errors and 

we analyze the results of a second computational step with (20) still valid. 

The approximate   derivatives are negative at A, B and D, and positive at C; 

consequently F increases at A, B and D and decreases at C (Fig. 7d.) 

Without pursuing the argument any further, one can already see the 

*    They are the same only if the shock is steady. 
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FIG. 7    FORMATION    OF   WIGGLES 

formation of a wiggle on the high pressure side of the shock.    This is a 

common, typical situation, due to a bold, but hardly justifiable, attempt 

to compute derivatives across a discontinuity;  and it is a first-order 

effect.    The introduction of higher order terms, as in the Lax-Wendroff 

technique, is irrelevant as far as this effect is concerned. 

However, as the computation proceeds, the second order terms in 

(16) become more and more important and they are finally responsible for 

the partially oscillatory and unsymmetrical distributions typified by Fig. 5. 

A simple example is offered by the density distribution, which is governed 

by the first of (11).    The second order term in the finite-difference formula- 

tion has the sign of m       and it grows with m     .   As the amplitude of the 
XX XX 
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oscillations increases, the contribution of y m      At     ends by becoming of 

the same order as m   At.   At point A of Fig.  7d the first order term tends 

to increase  n   but the second order term, which is negative, tends to 

decrease it.    The same can be said of point C,   with the signs reversed. 

Consequently, the density distribution tends to freeze in an oscillatory 

pattern. 

In conclusion, the fact that a certain numerical technique has been 

proven to be a valid approximation of a continuous differentiable flow does 

not make its use legitimate across a discontinuity.   All mathematical proofs 

founded on differentiability are invalid and the numerical consequences of 

doing something mathematically wrong appear as wiggles on the high pres- 

sure side of the discontinuity.    An accurate steady state solution cannot bt 

reached asymptotically since, once the wiggles are formed, the numerical 

evolution has very little in common with the physical evolution. 

In addition, one can easily see experimentally that a steady state with 

discontinuities is numerically unstable, if treated with the Lax-Wendroff 

FIG. 8 

VELOCITY     DISTRIBUTION 

ACROSS   A   STEADY 
SHOCK,   COMPUTED    BY 
THE   LAX-WENDROFF 
SCHEME    WITH    NO 
ARTIFICIAL   VISCOSITY 
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scheme  ,  even if the equations are in conservation form, when the discon- 

tinuities lie inside the computational region.    A minor perturbation in the 

assigned data generates non-zero derivatives and triggers an unsteady,  non- 

physical evolution.    See Fig. 8 where u is plotted after computing 20    steps 

of a steady flow (corresponding to a Mach 2 shock) by the original Lax- 

Wendroff technique, with  At/Ax = .2.    The initial values were all exact 

-4  * 
except that u,   at one point, had an error of the order of 10 

1. 5    Inconveniences of artificial viscosity. 

The argument developed in the preceding section is based on the 

assumption that there is no artificial viscosity,   but it holds as long as the 

artificial viscosity is too small.   It is clear that tha shock transition cannot 

be confined to a single mesh interval.   It is shown in Ref. 7 that the same 

conclusion is reached for a viscous flow.   Qualitatively, our argument agrees 

with Crocco's analysis of a shock in a viscous flow (Ref. 11).   In Crocco's 

paper the equations are somewhat simplified and a different numerical 

scheme is used. 

By so doing,   it is found that certain distributions of wiggles are 

the only possible numerical solution of the shock problem if the mesh size 

is too small with respect to the shock thickness.   A typical condition found 

by Crocco is, for example, 

Ax< 6/2 

where 6 is the shock thicknes;' defined by the ratio of the velocity jump to 

the maximum slope of the velocity distribution.   If Lax-Wendroff's scheme 

* The program used to compute this case is reported in Appendix 1. For the 
reader's peace of mind it should be mentioned that no instabilities appear if 
the initial values are all exact. 
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is used,  the wiggle distribution about the shock is asymmetrical.   The 

amplitude of the oscillations is much higher on the high-pressure side than 

on the low-pressure side. 

The above considerations show that the perspectives for a practical 

usage of artificial viscosity are rather gloomy.   Of course, artificial viscosity 

makes the numerical procedure once more mathematically legitimate. 

However,   one faces the unpleasant choice between 

(i)    a large viscosity (to maintain a coarse mesh and a  short computa- 

tional time); but,   then,   the problem solved numerically is not the original 

inviscid problem. 

(ii)    a fine mesh (to reduce the shock thickness and the dissipative 

effects in general to acceptable values); but then,   the price to be paid 

in  terms of computational time becomes too hig"i. 

In the simple problem examined in the preceding sections, the dam- 

aging effects of artificial viscosity are not as strong as in more complicated 

problems.    In fact, in most of the computational region the flow is uniform; 

all derivatives are zero, and the artificially viscous terms are zero.    In 

multi-dimensicnal problems where non-uniform steady states can be reached, 

the steady state affected by artificial viscosity is generally different from the 

physical one for inviscid flow.    For example,  if Lax's technique is used, the 

values of all physical parameters become so distributed that their time incre- 

ments exactly balance the errors due to averaging (Ref,  8). 
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2.   The problem of the accelerating piston. 

We are going now to examine a problem which is more interesting 

than the shock separating two uniform regions and which leads to a number 

of practical applications.   It is the problem of what flow is produced in a 

gas at rest by a piston moving at variable speed.   Let x = b(t) be the tra- 

jectory of the piston.    Let us assume that the piston was kept at rest when 

t < 0  and its motion starts at t = 0.    Let us also assume that th    initial 

speed of the piston,   b(0),   is zero.    For  t > 0 we will assume that b(t) is 

analytic and regular. 

Let the pressure and density of the gas at rest be the reference 

values,   p    - and p     ,,   and let a reference length,  x     ,,   be chosen arbi- 

trarily.   A reference velocity is then defined as ./p    TTp     7"   and a refer- 

ence tloe as  x     gl sfö    TTp     7.    In addition, let ref     rref    ref 

7   = £  _£££ ,        p = In-S—, S  =  Y tn 7 - (Y - 1)  P (21) 
0   Pref Pref 

* In non-dimensional form, the equation of motion can be written as follows : 

P^ +  uP    +YU     =0 
t XX 

u  +  uu    +17p    +0 (22) 
t x x x     ' 

S,. + u S     =0 
t X 

The characteristics are defined by 

X = HF = u ± a (23) 

where a is the local speed of sound,   a. = J y      .   We will say that the 

characteristics belong to the first or to the second family if the upper or lower 

* The theoretical background supporting the information contained in equations 
(28) to (31) is assumed as known ar.d can be found in Ref. 9. 
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sign in (23) is taken, respectively.   The compatibility equations along the 

characteristics are 

I a dP + Y du =  0 
(24) 

II a dP -  Y du =  0 

If the entropy is constant throughout, the compatibility equations can be 

integrated and recent in the form: 

I 2 - —j- a + u =  2r 

(25) 

II —j- a  -  u =  2s 

where  r and s  are constant along the characteristics.    The first character- 

istic of the  I family issuing from the point (x = 0,t = 0) is the line 

x = /?t (26) 

This line divides the piston-driven flow from the gas at rest.   As long as 

characteristics of the  I family do not coalesce, the region above such a 

line is a simple, isentropically compressive wave, corresponding to a con- 

stant value of s .    The value of u at a point (x,t) in the wave can be exactly 

computed as follows. 

Let T  be the value of t at which the I-characteristic passing through 

the point issues from the piston (Fig. 9).   Along such line,   u,   a and X are 

constant, so that the line is straight and defined by 

x  =  b(T) + ^b(T) +  a1(T)j(t- T) (27) 

where a, (T) is the speed of sound on the piston at time T.   Since s  has the 

same value inside the simple wave and in the gas at rest, 
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from (25.11) we obtain 

Y-J 
^(T) - b(T) =i^; 

that is. 

(29) 

a^T) = 77 + l^L b(T) (30) 

By replacing this value of a, (T) into (27) 

x = b(T) + [77+^- b(T)j(t - T) (31) 

is the equation of a I-characteristic in the simple wave. 

Suppose now that one wants to know the u-distribution along the 

x-axis at a given time t, . Equation (31) should be solved for T, after 

replacing t by t..   Then, 

u(x, tj) - b(T) (32) 

The derivative of u with respect to x is 

5T u (x, t) = b(T) £1 x*   '     ' x   '  dx 

ST s where •^- is computed from (31) at constant t: 

(33) 

GAS   AT REST 

FIG. 9   FLOW    PRODUCED    BY    AN 
ACCELERATING    PISTON 
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ar      _^ 1 ^___ (34) 

so that 

u    =  ^m 
x      (Y+l)b(T)(t-T) - ZvY - (Y-l)b(T) 

Similarly, the derivative of u with respect to t is computed: 

(35) 

b(T)C2y7+(Y+l)b(T)] (36) 

*'    (Y + l)b(T)(t-T)- 2,/7-(Y-l)b(T) 
u,.«- 

As long as the denominator in (35) and (36) does not vanish, the derivatives 

of u are continuous and differentiable, except along the first characteristic, 

defined by (26),  if the initial   acceleration of the piston is not zero. 

When the characteristics coalesce, they define an envelope, which 

can be found by differentiating (31) with respect to Tj 

^ b(T)(t-T)-v/7 -I^i b(T) =  0 (37) 

and eliminating T  between (31) and (37), or else, considering (31) and (37) 

as the parametric equations of the envelope: 

.   =   b(T).[A    +  4U(T)]2^(Y-l)b(T) 
L ^ J (Y + l)b(T) (Y+l)b(T) 

(38) 

t =  T +  2y7 + (Y-l)b(T) 

(Y+l)b(T) 

As for the point where the characteristics coalesce, we must distinguish 

between two cases. 

1)   The initial acceleration of the piston,  b(0), is different from 

zero.    In this case, we can prove that the curve defined by ( 38) is tangent 

to the first I-characteristic, defined by (26).    Indeed, if   T=0 (and, then, 
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b(T)=0,   b(T) = 0),  it is easily seen that x and t as defined by (38) satisfy 

(26).    In addition,   dx/dt,  computed from (38), turns out to be equal to Jy , 

The location of the first characteristic and of the envelope is shown in Fig. 10. 

Point A, defined by 

2^ (39) 
~       (Y+l)b(0) 

is their common point and is also the point where the characteristics coalesce, 

that is, the origin of a shock wave. 

It is worth studying how the distribution of a typical parameter, say u, 

steepens up in the vicinity of the first characteristic as time increases, until 

its slope becomes imfinitely large at A.  From (35) vith T = 0,   it follows that 

 2 b(0)  
u 
x      (Y+l)b(0)t- 2/7 

(40) 

t 

PISTON 
PATH 

x= b(t) 

ENVELOPE 

FIG. 10   ENVELOPE   OF   CHARACTERISTICS 
FOR   THE   CASE   OF  FINITE   INITIAL 
ACCELERATION 
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Fig.  11 shows  u    as a function of t along the first characteristic, in the 
ii 

case where b(0) = 2,   y = 1.4,    Note that the motion of the piston does not 

affect this steepening process.    In fact, the right-hand side of (40) contains 
n 

only the parameter b(0).    Therefore, regardless of what the phenomenon 

is in the rest of the simple wave, the value of u    always becomes infinite 

at point A. Fig.  12   shows a number of cross-sectional plots of u(x) at 

different times between t = 0 and t = t.   for the case where the piston path 

is defined by 

b =  t2 (41) 

1 'I 
10 

'  -"x 
■ 

8 • 

/ ■ 

6 - 
/  • 

4 y 

2 

n ■ 

■ 

0.2 0.4 
t 

0.6 

FIG. 11   PLOT    OF    Ux    AS   A   FUNCTION    OF 
TIME   ALONG   THE   FIRST   CHARACTERISTIC 
IN   THE  FLOW   PRODUCED   BY   A   PISTON 
MOVING   WITH    A   FINITE    INITIAL 
ACCELERATION 

*   Drawn by a Stromberg-Carlson 4020 plotter. 
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FIG. 13   PROVING   THE  EXISTENCE   OF A   CUSP   IN 
THE  ENVELOPE   OF   CHARACTERfTICS   WHEN 
THE PISTON   HAS NO   INITIAL   ACCELERATION 

2)   The initial acceleration of the piston is zero.    In this case u    on x 
the first I-characteristic, as given by (40),is identically zero and no steep- 

ening of the u(x) curves occurs.   This result suggests that no coalescence 

of characteristics occurs along the first characteristic.    The envelope no 

longer has the form shown in Fig.  10. 

To find what is the shape of the envelope, consider the second of 

(38) which gives  t on the envelope as a function of T.    At T = 0,   t is infinite. 
n 

For all T > 0,   since b(T) > 0,   b(T) > 0 for an accelerating ,   ston,  t is 
ii 

positive.   If b(T) does not vanish for  T >0,  then t tends to • again when T 
n 

increases indefinitely.   If  b(T) vanishes at some  T = T.,  there t becomes 

infinite.   In any case,   t(T) on the envelope must have a minimum (Fig.  13) 

at a certain value T     defined by 

UL " 7TT L2Y b<TB'J = B "2 
b2(TB) 

(42) 

Consequently, for increasing T,  t first decreases and then increases, and 
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B S    ENVELOPE 

GAS   AT  REST 

FIG. 14    ENVELOPE   OF CHARACTERISTICS   FOR  THE 
FLOW   PRODUCED   BY A   PISTON    MOVING 
WITH   THE  LAW   Xp-t3 
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the envelope is shaped as in Fig.  14, with a cusp at B.    The location of the 

cusp now depends on the nature of the piston path.    Note that u    becomes 

infinite at  B because  u    is infinite along the entire envelope, as one can 

see by combining (35) and the second of (38).    Therefore, the nature of the 

u-distribution at the origin of a shock is the same whether the shock occurs 

at A or at  B.    Fig. 15 shows a number of cross-sectional plots of u(x) at 

different times between t = 0 and t = t-  for the case where the piston path o 

is defined by 

b = t3 (43) 

2.1.   Numerical treatment of the problem.    First approach. 

In the initial phase (prior to the coalescence of characteristics), the 

flow is continuous, although the fir^t derivatives of th-; flow variables may 

be discontinuous along the I-characteristic issuing from the origin.   Con- 

sequently, we may decide to use a single computational region, extending 

from the piston (at the left) to an arbitrary boundary located somewhere in 

the region of fluid at rest, where the flow parameters are well known.    For 

simplicity, assume a right boundary moving parallel to the piston (Fig. 16), 

thus defined by 

x =   c(t) = b(t) + xo (44) 

The computational region is shown in Fig.  16;  it consists of a 

segment of the X-axis and the obvious way to relate the physical space to 

the computational space is to let 

(X = x  - b(t) 
(45) 

( T = t 

Since for any function f. 

fx = fX-      ft = fT-b£X <46' 
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in the computational space the equations of motion (22) are, in matrix 

form: 

with 

f = 

fT  + Afx =  ( 

■p" 
rC   Y    0" 

u ,       A  = ^   C   0 

.s. .0 0   c. 

(47) 

,     C  = u  -  b (48) 

All interior points are computed as follows. Equation (47) is differentiated 

with respect to X and T  successively: 

A. 
/    x BOUNDARY 

/ 

\ 
—ö—o—O—O—O— O— Ö- 

PISTON BOUNDARY 
XQ 

FIG. 16   FIRST   DEFINITION   OF  A   COMPUTATIONAL    REGION 
FOR    THE    PROBLEM    OF   THE   ACCELERATING 
PISTON 
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fTX + Ax fx +  A fxx  = 0 

fTT + AT fx +  A fTX 

(49) 

(50) 

The first and second space derivatives appearing in (47), (49) and (50) are 

approximated by centered differences, 

XX 

fk     -  £* n+l        n-l 

2 AX 

^       +  f* n+l   +    n-l 
^  

2i n 

AX 

To evaluate A-. and A-,   note that 

J   =exp(llip+|) 

consequently. 

= ux'   *x - ^ px + Z V'   ^ = 

(51) 

(52) 

(53) 

0 0 

cx 0 

0 c 

(54) 

These values are used to evaluate fTy    Similarly, 

CT=uT b ,  7T = 7(1^- PT + i sT) , AT = 

cm   o T 

T        T 

0 

0 

C, 

(55) 

and,  since  u-,   P_  and S_  are furnished by (47), we have all the necessary 

elements to compute  fTT«    Then (16) is used to proceed one step ahead in 

time.    As a matter of fact, the entropy is identically zero in this problem 

(which we consider finished once the characteristics coalesce), the third 

equation could be dropped and the terms  S, Sv, S_ eliminated; but we pre- 
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VC-Bo 

FIG. 17   TO   DETERMINE   THE    RATIO  BETWEEN 
At   AND Ax 

fer to keep them to show a general pattern to be followed for non-isrntropic 

flows. 

The boundary values in the present case are extremely easy to 

compute.   At the piston,   u = b,  S = 0,   a is given by (30) with t instead of 

T,   and P follows from (21).   At the free boundary on the right,   u = 0, 

S = 0,   P= 0. 

The stepsize in time,   AT,   is determined as follows.   Of the two 

characteristics,  consider the one which has the larger slope with respect to 

the t-axis (for example the one labeled I in Fig.   17);   such a slope is safely 

defined by   |u| + a.    If A, 6 and C are the three points used in the compu- 

tation, draw a line issuing from C and symmetric to  I.    Let D be the inter- 

section of I and its symmetric.   Every value of At less than BD satisfies 

the Courant-Friedrichs-Lewy rule (Ref.  10).    Now,   BD = Ax/|u| + a) and 

so we assume 

At  =   .7 Ax (56) 
|u| +a 

The coding of this program is very easy;  a sample code is shown in 

Appendix 2 and it should be self-explanatory.    The "output" routine is not 

reported here and is left to the reader to be shaped according to his 
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preferences.    The "piston" routine is not shown either;  it must provide 

the necessary data to define the piston path,   b(t) and its derivatives  b 
ii 

and b. 

2. 2   The case of discontinuous initial acceleration. 

We apply now the program to the two problems mentioned in 

Section 2.    First, we assume the piston path as defined by (41).    We know 

that u    is discontinuous along the x = Jyt line and that it becomes infinite at 

^ =^+r = •4929      (for Y = 1-4) (57) 

where a shock should originate.    We are interested in seeing what kind of 

difficulties and inaccuracies arise because of the discontinuities in the first 

derivatives.    Such discontinuities are not as strong as the ones across a 

shock but still they make the flow parameters not twice differentiable along 

the first I-characteristic.   So, we expect a progressive worsening of the 

computed flow in that neighborhood, until a pattern similar to the one 

described in Fig.  7 builds up as representative of the shock. 

* 
Fig.  18 shows some of the results (values of u)  .   The computed 

values are shown as circles, whereas the exact distribution is represented 

by a continuous line.    Point A,   as defined by (39), is also shown.    We see 

that, long before the characteristics coalesce, the computed values deterio- 

rate in the vicinity of the line where the derivatives of u are discontinuous. 

In addition, once the characteristics coalesce into a shock, a wiggle starts 

building up.    According to our analysis (Fig. 7), we should fit a shock two 

* The mesh has nodes spaced  .025 apart.    There are no other nodes, in the 
range of interest, except those shown in Fig.  3.18.    However, not all the 
steps are shown.    The computation, with a total of 50 intervals across, 
takes about 6 seconds on a CDC 6600 computer (including compilation).    The 
computation has been repeated on an IBM 360/50 computer,  coupled with the 
Stromberg-Carlson 4020 plotter, to obtain the figure. 
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nodal points at the right of the wiggle.   We will see later on how to treat 

the shock as a, discontinuity;  by doing so (here we mention the result with- 

out presenting any figure), the shock would quickly adjust itself to the right 

position, and the values on the high-pressure side would improve rapidly. 

However, the results are far from perfect in the time space starting at 

about t = .4 and lasting for a time of the order of 1.    This effect is due 

not to the formation of the shock but to the discontinuity in the derivatives 

of the velocity.   We will return on the subject on Section 3.3. 

2. 3   The case of continuous initial acceleration. 

Now the same program is applied to the case where the piston path 

is defined by (43).    The derivatives of the velocity are continuous every- 

where and the coalescence of characteristics occurs at point  B, defined by 

(43).    With Y = 1.4,   we find T_ = .389 and, from (38), 
a 

tB  =   .844,     xB  =  .8415 (58) 

Since in this case we are not forcing the numerical computation to 

approximate derivatives where they do not exist, we anticipate a much 

better behavior of the computed results prior to point  B.    The expectation 

is confirmed by Fig.  19.    Again, as in Fig.  18, the exact distribution of 

u(x) is represented by a continuous line, and the computed values (at mesh 

points spaced  .2 apart) by circles.    The circles fall exactly on the lines, 

as long as t < tR.    In addition, it can be noted that the numerical technique 

is capable of handling a very sharp transition with no trouble. 

If the computation is continued beyond t = t«, however, the effects o 

of neglecting a shock begin showing up and a wiggle if formed where antici- 

pated (two mesh points at the left of the approximate location of the shock). 
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2.4.    An expansion problem with discontinuous initial acceleration. 

So far, we have found experimental confirmation to the points made 

above.   Discontinuities in the flow parameters,  such as shocks, originate 

wiggles.   Discontinuities in their derivatives are not equally catastrophic 

but deteriorate the numerical results in a wider and wider region surround- 

ing the location of the discontinuity.    In both cases, the discontinuities should 

be treated as boundary points . 

Before analyzing how this can be done, it is interesting to see how 

the discontinuity in the derivatives of the flow variables affects an expanding 

flow.    To this effect, we study the expanding counterpart of the case pre- 

sented in Section 2.2.    Let the piston now move to the left, and its path be 

defined by 

x = - t2 (59) 

Again, (35) and (36) show that u    and u   are discontinuous on the first 

I-characteristic.   For example, 

u    =  (60) 
x       (Y-Dt + VY 

However,   u    decreases with increasing t,   and we may anticipate that the 

effects of the discontinuity in u    will become less and less relevant with 

increasing time;  and since they are not strong to begin with, they should be 

irrelevant throughout. 

The anticipation is confirmed by Fig. 20, drawn with the same 

criteria as Figs.  18 and 19.    The computed values (circles) lie very close 

to the theoretical line.    To see the effects of neglecting the discontinuity 

one has to enlarge the u-scale by one order of magnitude. 

3.    Treatment of a shock on a boundary. 

In this section we examine in detail a technique which combines the 

interior point computation described above with a treatment of one boundary 
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2.4.    An expansion problem with discontinuous initial acceleration. 

So far, we have found experimental confirmation to the points made 

above.    Discontinuities in the flow parameters,  such as shocks, originate 

wiggles.    Discontinuities in their derivatives are not equally catastrophic 

but deteriorate the numerical results in a wider and wider region surround- 

ing the location of the discontinuity.    In both cases, the discontinuities should 

be treated as boundary points. 

Before analyzing how this can be done, it is interesting to see how 

the discontinuity in the derivatives of the flow variables affects an expanding 

flow.    To this effect,  ws study the expanding counterpart of the case pre- 

sented in Section 2.2.    Let the piston now move to the left, and its path be 

defined by 

x  =  -  t2 (59) 

Again, (35) and (36) show that u    and u   are discontinuous on the first 

I-characteristic.    For example, 

u     = — (60) 
X       (Y-lJt + v/Y 

However,   u    decreases with increasing  t,   and we may anticipate that the 

effects of the discontinuity in u    will become less and less relevant with 

increasing time;   and since they are not strong to begin with, they should be 

irrelevant throughout. 

The anticipation is confirmed by Fig.  20, drawn with the same 

criteria as Figs .   18 and 19.    The computed values (circles) lie very close 

to the theoretical line.    To see the effects of neglecting the discontinuity 

one has to enlarge the u-scale by one order of magnitude. 

3.    Treatment of a shock on a boundary. 

In this section we examine in detail a technique which combines the 

interior point computation described above with a treatment of one boundary 
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ENLARGEMENT 

FIG. 20    COMPARISON   BETWEEN   EXACT   VALUES    AND 
VALUES    COMPUTED   AS    EXPLAINED   IN 
SECTION   2.1.   PISTON   PATH   DEFINED   BY 
Xp«t2 
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as a shock.    We assume that the location of the shock at a given time is 

known.    The shock is moving at a certain speed,   W = c(t),   which is one 

of the unknowns of the problem.    Consequently, the interior point computa- 

tion must also be modified slightly, and we begin with it. 

3.1.   Computation of interior points. 

Referring to Fig.  16, the following change of coordinates is 

necessary: 

A  " c(t) - b(t) 

T   =  t 
(61) 

Since,  for any function f. 

1 

the equations of motion in the computational space are, in matrix form, 

with 

fT + Afx = :    0 

"P" c F 0 

£ = u > A  = E c 0 

-SJ .0 0 c 

(63) 

(64) 

= ^ig   ,     C =  D Fui (X-l)b - Xc] ,   E =D^   ,   F = D' 

Consequently, (65) 

Dx = 0,   Cx = D(ux+b-c,'    ^^X*   FX"0,   AX ~ 

cx   0     0 

EX   CX   0 

0       0      C 

and 

Xj 

(66) 
DT=-D2(c),   CT=DTC/l>fD[uT+(X-l)b-XcJ, ET=DT7 + D7T, FT=DTY, 

CT FT 0 

ET CT 0 

0        0        c. 
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The code then proceeds as shown in Section 2.1. 

3.2.    Shock computation. 

To compute the right boundary, where the shock is, we proceed as 

follows.   Since the flow in front of the shock is known, only four quantities 

must be evaluated at the shock point, viz.  P, S (or  p and p),   u,   and  W. 

The Rankine-Hugoniot conditions can be used here in the form: 

Mj   =  WA/Y (67) 

V =^T(1 
2    " + I^M2) 

n   -   (Y+1)D-(Y-1) 
P -(Y+D -(Y-MO 

(68) 

(69) 

v  =  -  W/o (70) 

u = v +  W (71) 

where  n. Pi  v and u are values on the high-pressure side of the shock, 

that is, at the point we wish to compute.    Here we have five equations with 

six unknowns (W, M.,  D>  P» V. U).    The missing equation is the compati- 

bility equation on the I-characteristic reaching the shock point from a point 

A located in the interior of the region being computed.    In the physical plane 

0 t + At 

FIG. 21   COMPUTATION    OF   A   SHOCK    POINT 
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w    w2 

FIG. 22   NEWTON'S    RULE    TO   MINIMIZE    ERRORS 

the situation appears as in Fig.  21.    All values at nodal points   B,  C,  D,  ... 

are known at time t.    The location of point A must be found and the values of 

the physical parameters at A (all denoted by  * in what follows) must be 

interpolated. 

To determine x^ we use the equation 

x+ = c  - (u+ a) At (72) 

where u and a may be taken as the arithmetic averages between their 

values at Q and at A.    The compatibility equation (24-1) can be written in 

the form: 

u = u, •   ftP-P,) (73) 

where, again,   a is an average value. 

Equations (72) and (73), together with an interpolation scheme to 

determine  u,.,  PA, a.,  must be added to the Rankine-Hugoniot equations 

above and the whole system can be solved by iteration.    We describe 
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FIG. 23   EXAMPLES    OF    POSSIBLE    FAILURES    OF    NEWTON'S 
RULE 

Newton's method which generally works in a variety of problems.    Two 

guesses of W are made,   W,   and W,.   Each time, equations (67) through 

(73) are used.   The value of u obtained from (73) generally is different 

from the value obtained from (71).   Call E their difference (Wj  when Wj 

is used,   E?  when W?  is used).   An extrapolated value of W,   W,   which 

should give a smaller value of the error  E,   is obtained, according to 

Fig. 22,   as 
W     -   W, 

W =  Wl  " El   E2  -  E1 
(74) 

Then the procedure is applied again, using W-  instead of W,,  "W instead 

of W0 and E,  instead of E,,  and reiterated until  E9 becomes less than 
2 2* " 
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V\LACTUAL VALUE 

INTERPOLATED 
VALUE 

SHOCK 

FIG. 24     INTERPOLATION     BEHIND   A   SHOCK 

a prescribed tolerance.   Such a technique is not completely safe.    For 

example, there are possibilities of being caught in a loop or of generating a 

divergent iteration or of dividing by zero even when a solution exists. 

Figure 23 shows examples of these possibilities (the exact dependence of 

E on W  being shown by the solid line and the solution being obviously given 

by point S).    However, such cases are highly improbable because they 

require the conditions shown in the figure to be satisfied to an order of 

accuracy equal to the number of significant figures carried by the computer. 

Therefore, it does not pay to take special provisions for them,  which would 

make the code cumbersome and increase the computational time. 

More interesting because of its physical implications, and some- 

times difficult, is the problems of interpolating values at A (Fig.  21).    In 

most cases a linear interpolation between points  C and  D is sufficient. 

This amounts to approximate the value of any function f at A by 

£* = f(C) + e[f(D)-£(C)j (75) 

where 
x(C) 

Ax (76) 
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There are cases, however, where in the high pressure side of the 

shock the physical values are distributed as shown in Fig.  24.    This is the 

case at the very beginning of the shock,  in both problems studied above. 

If point A is very clot e to O (and this happens at the beginning of the shock, 

when W is practically equal to u+a) the linearly interpolated values at A 

are too different from the actual values.    The effect of the pressure surge 

behind the shock is not picked up properly by the computation and the shock 

is not properly fed.    Consequently, the strength of the shock does not grow 

sufficiently, the values at the shock do not grow sufficiently and, in few steps, 

a wiggle starts building up behind the shock.    The effect is not permanent 

since the right values are transmitted to the region near the shock from the 

piston and the flow has a tendency to correct itself.   See,for example, in 

Fig. 25, the u-distribution in the problem of Section 2.2 at successive times 

after the shock formed, if the technique described above and a linear inter- 

polation at point A are used. 

A much better numerical description of the physical nature of the 

flow in the vicinity of the shock is obtained if the values at A are considered 

as the average of the values extrapolated linearly from points  B and C  and 

the values interpolated linearly between points   C and D  .    This means that 

the value of any function f at A is assumed to be 

f«  = f(C) +  s[f(D) - f(B)J/2 (77) 

The results, in the same problem shown in Fig.  25, are now those of 

Fig.  26.    The shock, as one can see, picks up strength from the very 

* This is indeed a very easy way to improve the interpolation.    One could 
think of other ways of doing it, for example, by interpolating on second 
order fits of x(u),   x(P) and x(S) but such interpolations would reouire a 
great deal ot additional computations which seems to be unjustified,  in the 
light of the results obtained by using (77). 
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beginning and no wiggles  appear. 

Obviously, if the distributio    of values in the vicinity of the shock is 

not as critical as in Fig.  24, (77) is numerically equivalent to (75). 

Once the values at the shock are determined, including W,  the 

shock location at t + At is obtained by simply writing that 

c(t + At) =  c(t) +  W(t) At (78) 

3. 3   The infinitely weak shock. 

Being able to compute a shock point on the boundary, we have the 

case of the accelerating piston with a finite initial acceleration under control. 

The proper way of computing it consists of assuming that a shock exists from 

the beginning; issuing from the origin of the (x,t) plane with a speed equal 

to Jy'.    In so doing, the discontinuity in u    does not affect the computation 

since it takes place ct a boundary point, which is assumed to be a locus of dis- 

continuities and is treated as sucn.    On the other hand,  an infinitely weak 

shock is a characteristic and,  since the assumed shock does not exist before 

t = tA,   during this time the boundary is the first I-characteristic itself. 

Point A (Fig. 10) is then reached as a boundary point and the computation can 

be continued beyond it indefinitely since all the computational apparatus to 

take care of a growing shock is available.    The results (Fig.  26) are remark- 

ably accurate and the transition from the simple wave to the shocked, uon- 

isentropic flow is extremely smooth. 

In Fig.   25 and 26 the piston path is defined by 
t2 (0< t <. 7395) 
1.479t-.5469 (t>.7395) 

o= 

By doing  so,   a steady state  should be reached asymptotically,   where 
the  shock Mach number is 2 and the flow is uniform between the piston 
and the  shock.     It can be  seen from both figures that such a steady 
state is  reached very rapidly.     The computed shock Mach number at 
the time  corresponding to the last plot is 2,01, 
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One word is in order about how to start the computation.    Since the 

physical region to be computed vanishes at the origin, we are forced to start 

at some very-small but finite, positive time.    In general, when a similar 

situation occurs in a more complicated problem, one may assume that the 

initial distribution of physical parameters corresponds to a simple wave. 

Appendix 3 contains the code for the computation from which Fig.  26 

was obtained.   The subroutines "piston" and  "output" are omitted.    By com- 

paring Appendix 3 with Appendix 2 one can see that the subroutine which 

computes the interior points is not made more difficult by the stretching of 

the physical space into a computational space. 

A further proof of the possibility of considering a character- 

istic as an infinitely weak shock is found if the code of Appendix 3 is 

applied to the expansion problem of Section 2. 4.    The results are omitted 

here.   Starting with 16 mesh intervals,  values correct to within 5 signifi- 

cant figures at least are obtained as long as the mesh size does not become 

gigantic. 

3.4   Treatment of an imbedded shock. 

In the problem of an accelerating piston with zero initial accelera- 

tion the shock is imbedded in the flow field.    In this section we describe 

briefly how this situation is handled. 

Since the inception of the shock, that is,  since t = t^,   the flow field 

is split into two regions, bounded by the shock.    There are, thus, two points 

representing the shock, one being the right boundary of the high pressure 

region and the other being the left boundary of the low pressure region 

(Fig. 27).    The computation of the former is the same as outlined in Section 

3.2, once the low pressure point has been evaluated.    The latter is reached 
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PISTON   ®     SHOCK   SHOCK ®    ARBITRARY 
BOUNDARY 

FIG. 27   TWO   COMPUTATIONAL    REGIONS 
SEPARATED     BY  A  SHOCK 

FIG. 28   COMPUTATION   OF   THE 
LOW-PRESSURE   SIDE 
OF A   SHOCK 

PISTON 
PATH 

ONE   REGION 

GAS   AT  REST 

FIG. 29   COMPUTATIONAL   REGIONS 
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by two characteristics and a particle path; therefore, two compatibility con- 

ditions and the condition of conservation of entropy can be written to deter- 

mine the flow parameters (Fig.  28).    In the physical plane, the locations of 

points A., A-  and B are given by 

x*l  = XQ _  <u+a) At 

x«2  = XQ  '  ^U"a) At ^ 

I   x     = x     -  u At 
\     B Q 

After the pertinent interpolations (in the spirit of (77) ) have been made, 

equations (24) are applied, in the approximate form: 

a«lP«l  +  a*2P*2 +  Y(U«2■U«1, 

P = 
a«l   +  a«2 

u = u*i - ^T^-P«^ <80) 

S   =SB 

The interior points in each region are treated as explained in 

Section 3.1, with obvious modifications (for example, what is  c(t) for region 

1 is b(t) for region 2). 

The right arbitrary boundary of region 2 can be chosen to be the 

x = «/Y t line, as in the problem with finite initial acceleration.    Values along 

that line can be safely forced to be u = 0,  P=0, S = 0.    The line itself is 

prescribed,  so that in region 2,   c = VY t , c = VY,   c = 0. 

There is a time t^, (Fig. 29) when the shock between regions   1  and 

2 crosses the first I-characteristic.    In its vicinity, if no special provisions 

are taken, the time step would decrease indefinitely since it is proportional 

to the physical mesh size and this in turn decreases indefinitely,  when the 

region 2 is squeezed between the shock and the first characteristic (  the 

number of mesh points remaining constant).    Therefore, once the width of 
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FIG.   30  BEHAVIOR   OF   u(x)   IN   THE   NEIGHBORHOOD 
OF   AN    INCIPIENT   SHOCK 

0.2 

0.1 

0.5-^" 
u«-B/3A 

FIG. 31 
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region 2 becomes less thana prescribed value, the computation of the region 

is dropped and only region 1  is computed, letting the shock divide it from the 

gas at rest. 

3.5.    Prediction of the formation of a shock. 

At t = t-,,   one of the two regions disappears.    The inverse situation 
C 

arises at t = t_,   and it is a much more difficult one.    Prior to tg,   the 

computation proceeds as described in Section 2.3.   We need a criterion to 

detect the origin of a shock, and the criterion must furnish the location of 

point B,   in space and time, to within one mesh interval in space and one 

or two steps in time, lest wiggles appear.    This is indeed a very difficult 

problem in that a point must be found where u    becomes infinite, when we 

only dispose of a discreet number of values of u.   Obviously, no finite 

difference approximation to a derivative can ever become infinite and any 

identification of infinity with "a very large value" is arbitrary.    A study of 

the flow in the vicinity of point B (Fig.  19) should guide us to find a better 

criterion. 

Let us consider the mesh interval where the slope of u(x) is the 

highest and four nodes (in the computational space), two at the left and two 

at the right of it (Fig. 30).   Since we are interested in a situation where 

u    becomes infinite, it is better to consider x as a function of u rather 

than u as a function of x. 

The simplest polynomial having a chance of giving a fair approxima- 

tion to x(u) in the interval shown in the figure is a third order polynomial: 

x=   Au3 +  Bu2  +  Cu+D (81) 

We are looking for the case where the condition 

^j=3Au2+2Bu+C  =  0 (82) 

is satisfied by one real value of u.    This requires 
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B    -  3 A C  =  0 (83) 

Suppose now that A, B,   and C are determined to fit the values of 

x(u) at the four points of Fig.  30.    We can use (83) as a test.    In the simple 
2 

wave,   B    - 3AC  should generally be negative since no real value of u 
2 

satisfies (82).    When t- is reached,   B    - 3AC should vanish and then 
a 

become positive, and this yields a possible criterion for the detection of tR. 

If x,   is the value of x at point  1,   the values of x at points  2,  3, and 4 are 

x, + Ax,   x. + 2 Ax,   x, + 3 Ax.    By writing (81) for these four points, and 

calling 6  the determinant of the coefficients of the right hand sides, we 

obtain 

0 u 

1 u 
Ax 

2 u 

3 u 

u. 

u. 

u. 

u. 

Ax 
T 

2 2       2 u, - 2u0 + u,    u-- 2u_ + u1 '1 

2      ,2^2 u. - 2u- + u- 4 3        2 
u.- 2u- + u_ 4        3      2 

^f(2,l) 

and, similarly. 

Ax A: 
B = ^f(3,l)  ,     C  = - -^f(3,2) 

Therefore the criterion suggested by (83) can be written as 

12 [f(3,l)J2 
3f(3,2) £(2,1) < 0 (84) 

Fig.  31 shows the trend of the left hand side of (84) in the calculation of 

Fig.  19. 

Finally, Fig. 32 shows plots of u(x) at different times for a calcula- 

tion of the problem of section 2. 3 carried along indefinitely beyond t«. The 

criterion above to determine tR is applied, then the computational region is 

split into two parts; at tr the second region is dropped again, as described 

above. The coding of this program is not shown since it can be easily 

obtained as an extension of Appendix 3. All simple arrays should in this case 
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be  double arrays, to permit values of the physical parameters in 

different  regions to be distinguished from each other;   similarly, 

quantities   such as b,   c,   b,    ^x  etc. , should be   stored in arrays,   one 

value  for  each region.     More details on the treatment of a problem 

with multiple  shocks,   including the problem above as a particular 

case,   will be found in another paper. 
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APPENDIX   I 

OIMFNISION  R(50} tO(bO) ,E(50) tQR(50) tOM(50) tHR(50) »HMCSO) tHE(50) tRN 
1(50) .EN(50).U(50)tH(e;n) 

REAL   M{50)tMN{50) 
DATA   SIGtP?*R2*E1fQl.OE/.1*4.5t2.66666666666667»5.Sf6.b*«4/ 

100 FORMaT(lH0/<10E12.4)) 
101 FORMäT(1H1/I10) 

SI6?=SIG«*?       $ GF=SQRT(1.4)      S Uls-2,»6F 
U2=(J1/R2 J E?=2.5«P2*1,05   $ Hl*-12,6<»GF 
DOl M=lf20        J F(N)sE2 $ U(N)»U2 

1 R(N)rR2 
DO 2 N=21»40      S E{N)=E1 S U(N)=U1 

2 R(N)S1. 
00 3 N=1^0       $ M(N)sUl S Q(N)sQl 

3 ri(N)sHl 
U(2l)=Ul*.000l 
M(2l)=U(^1) 
U(2lja.4<»E(2l)*.8»U(2l)**2 
M(2n=U(21)»(1.4»E(2l )-.2*U(21)«»2) 
KsO 

8 KsK*l 
IF{FLOAT(K/ln).NE.FLOAT(K>/lO,)GO TO 7 
WRITF(6«1Ü1)K 
WRITF{6I100)(U(N)»Nsi»40> 
«<RITF(6,1Ü0) (M(N) »N=l»40) 
WRlTr(6«lÜ0)(Q(N)»N=1.40) 

7 IF(K,GT.200)CALL EXU 
00 4 Nsl«40 
QR(M)=-.Ö«U(M)**2 
QM(M)=l.b*(J(N) 
HR|M)=-1.4»U(N)»E(N)/P(N)*.4*U(N)«*3 
MM(N)=l.<f*F (N)/R(N)-,ft»U(N)»»2 

4 HE(M)al.4« (M) 
Üü *   Na2fJQ 
ÜMPrM(N*l)-M(N)   $ OQP=Q(N*l)-Q(N)   S DHP«H(N*l)-H(N) 
OMMSM(N)-M(N-l)   $ OOMsQ(N)-Q(N-l)   $ DHMXM(N)-H(N-l) 
RN{N)sR(N)-(0MP*DMM)»SlG*2,»(0QP-DQM)«SlG2 
MN(M)=M{N)-(OOP*DQM)«SlG*((ÜR(N*1)♦QRIN))*OMP*(OR(N)♦QR(N-l))♦DMM* 

1 (UM(N*1) ♦ÜM(M) )»OQPMQM(NUOM(N-i) ) »0QM*2,*QE» (DHP*DHM) )«Sl62 
EN(N)=E(N)-(DHP*DHM)»SlG»(/fHR(N*l)*riR(N))#DMP*(HR(N)*HR(N-l))#OMM* 

1 (HM(M*n*HM(N) ) »DOP* (HM (N) ♦HM (N-l) ) «DOM* (HE (N*l) ♦HE (N) ) «DHP* (HE (N) 
2*HE(M-1)}*nHM)«SlG2 
IF(APS(RN(N)-R(N)).LT.l.E-9) RN(N)=RIN) 
IF(ARS(MN(M)-M(N) ).LT.l.E-q) MN(N)S!M(N) 
IF(ARS(EN(N)-E(N)).LT.1.E-Q) EN(N)=E(N) 

5 CONTINUE 
DO *   N=2t39       $ R|N)=RN(N)        $ ^(N)sMN(N) 
E(N)=EN(N)        J U(N)=M(N)/R|N)    $ 0(N)s,4»E(N)♦,8«U(N)»M(N) 

6 H(N)rU(N)«(l,4«E(N)-.?*U(N)*M(N)) 
60 TO 8 
END 
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APPENDIX IT 

COMMON KtNAfNC«GAMMA»xO»TENDfGA,G0«6F»TIMF»DT»0T2»DX»00X.00X2♦BSEC 
l«X(inO)tXX(IOO)«P(100)tU(lnO)fA(lOO)«T(lOO)tS(100)tSN(lOO)*UN(lOO) 
2»PN(lOO) 
DATA/X/lÜÜO»0./ 

100 F0RMAT(8£ln.4) 
101 FüRMAT(1H1,4F15.4) 

REA;)(5f Iüü) GAMMA, xo« AM» TEND 

»i/RlTF(6.1Ul)GAMMA»X0,ftN»TEND 
GA = OAMMA/(r,AMMA-l,) 
GOs.^CGAMMA-l.) 
GF=SORT(GAMMA) 
Dx-.xn/AN 
NA = AM 
UDXs,b/DX 
Ü0X?=1,/ÜX/0X 
NCsMA*! 
00 5 N=1»NC 
X(N)=DX*FL0AT(N-1) 
XX(N)=X(N) 
A(N)=GF 

2 T|N)=l. 
Ksl 
TIMFsO. 

6 

KsK*l 
OT=100. 
00 7 N=1»NC 
ÜTls.7»UX/(U(N)*A(N) ) 
IF(DT1.GT.DT)G0 TO 7 • 
ÜT=DTl 
CONTINUE 
TIMF=TlME*nT 
ÜT2=DT«»2/2. 
CALL PISTON 
A1SGF*6ü»UN(1) 

PN(l)sGA»AL0G(Al«»2/GAMMA) 
CALL POINTS 
00 A N=i»NC 
XX(M)sXX(l)*X(N) 
U(N)SUN(N) 
S(N)sSN(N) 
P(N)sPN(N) 
T{N)sEXP(P(N)/GA*S(N)/GAMMA) 
A(N)aGF*SUWT(T(N)) 
CONTINUE 
CALL OUTPUT 
IF(TIME.LE.TENÜ)GO TG 3 
CALL EXIT 
END 

SUBROUTINE POINTS 
DO 1 N=2»NA 
UXs(i)(N*l)-U(N-l) )«DDX 
PXs{P(N*l)-P|N-l))»Dnx 
SX=(S(N*1)-S(N-1))»DDX 
TX=T(N)«(PX/GA*SX/GAMMA) 

UXXs(U(N*l)*lj{N-l)-2,»U(N) )*DDX2 
PXXs(P(N*l)*P(N-l)-2,«PlN)»»00X2 
SXXS{S(N*i)*S(N-l)-2,»S(N))*D0X2 
AC=U(N)-U(1) 
PT=-(AC«PX-GAMMA»UX) 
UTs-(AC»UX*T(N)»PX) 
ST=-AC*SX 
TTST(N)«(PT/GA*ST/GAMMA) 

ACXsllX 
ACTsUT-BSEC 
PTXs-(ACX«PX*AC«PXX*GAMMA»UXX) 
UTXs-(ACX«l)X*AC«UXX*TX»PX*T{N)«PXX) 
STXr-(ACX»SX*AC»SXX) 
PTTr-(ACT«PX*AC*PTX*6AMMA«UTX) 
UTT=-{ACT»ÜX*AC»UTX*TT*PX*T(N)»PTX) 
STTs-(ACT»«;X*AC*STX) 
PN{N) =P (N) ♦PT«ÜT4.PTT«nT2 
UNIN)=U(N)*UT*ÜT*UTT#0T2 
SN(M)=S(N)♦ST»ÜT*STT«0T2 
CONTINUE 
RETURN 
END 
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APPENDIX   III 

COMMON «♦NA«NC»GAMMA,xO»TENDt 
lü0X,r)ÜX2fd«C«BÜ0TfC00Tf6SECtC 
2A(100)*T(100)tS(lOO)fPN(lOO)« 

100 FORMAT(8E10.4) 
101 FüHMAT(1H1.4E15.4) 

HEAOfBf100)GAMMA,XO»AM»TEND 
WRITF(6,10l)GAMMA»XO»AN»TEND 
GA=r,ÄMMA/(GAMMA-l,) 
GH=1,/(GAMMA-l.) 
üC=(GAMMA*l.)*GB 
GO=.e;*(üAMMA-l.) 
GE = .";*(GAMMA*1.) 
GF=SOWT(GAMMA) 
NA = aN 
NC=MA*1 
TIMFr.Ol 
CALL PISTON 
HsXX ( 1) 
U(1)=UN{1) 
XX(Nr)=GF«TlME 
f)X = l ,/AN 
Ü=XX(NC)-XX(l) 
ÜOXs.S/OX 
ODX?=l./OX/Dx 
00 ? N=l,Nr 
X(N)=ÜX»FL0AT(N-1) 
XX(M)=X(N)*D*XX{1) 
U(M)=U(1)*(1,-X(N) ) 
P(N)=2.»GA»AL0G(1.*U(M)*GD/GF 
S(N)-0. 
A(N)=GF*GÜ«U(N) 

2 T(N)=A(N)»«2/GAMMA 
C=XX(NC) 
COOT=GF 
CSEC=0. 
K = l 

3 KsK*i 
OT=100. 
UO 7 N=lfNC 
ÜTlr,70üX/(U(N)*A(N))«D 
IF(OTl.GT.nT)GO TO 7 
UTsOTl 

7 CONTINUE 
TIMF=TlM£*nT 
ÜT2=0T»»2/?, 
CALL PISTON 
AlsGF*Gü*UN(n 
PN(1)=GA*ALOG(A1»»2/GAMMA) 
SNI1)=0. 

GAt6BfGCt6D.GE«6FfTIME»0T*0T2»DfDX, 
SECtXAtXdOO) >XX(100)iP(100)tU(lOO) « 
UN(100)»SN(100) 

CALL POINTS 
CALL SHOCK 
BsXX (1) 
BDOTrUNd) 
0=C-P 
DO fl Nsl,NC 
XX(N)=B*X(N)«0 
U(N)=UN(N) 
P|N)sPN{N) 
S(N)SSN(N) 
T(N)sEXP(P(N)/GA*S(N)/GAMMA) 
A(N)sGF»SQRT(T(N)) 

8 CONTINUE 
CALL OUTPUT 
IF(TIME,LE.TEND)G0 TG 3 
CALL EXIT 
END 
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APPENDIX  Hl  (con't. ) 

SUBROUTINE   POINTS 
Ü0   1   N=:2»NA 
AAsl./D 
UX=(U(N*1)-U(N-1))»DDX 
PX=(P(N*1)-P(N-1))*DDX 
SX=(S(N*1)-S|N-1))«DDX 
TX=T(N)«(PX/6A*SX/6AMMA) 
UXXs(U(N*l) ♦IJ(N-1)-2.»U(N) )«DDX2 
PXX=(P(N*1)*P(N-1)-2.»P(N))*D0X2 
SXX=(S(N*1)*S(N-1)-2,»S(N))*DDX2 
ACsAA^C(X(N)-1.)»B00T-X(N)»CD0T*U(N) 
AÜ = r7AMMA»AA 
AE=AA»T(N) 
PT=-(AC«PX*AD*UX) 
UT=-(AC«UX*AE*PX) 
ST=-ACoSX 
TT=T(N)*(PT/6A*ST/6AMMA) 
ACXsAA»(dDOT-CÜ0T*UX) 
AEXsAA*TX 
PTX=-(ACX*PX*AC«PXX*An*UXX) 
UTX=-(ACX»UX*AC»UXX*AFX«PX*AE»PXX) 
STX=-(ACX»SX*AC*SXX) 
AATs-AA««2»(CD0T-BDOT) 
ACTsAAT«AC/AA*AA»((X(N)-1.)»BSEC-X(N)*CSEC*UT) 
A'JTs^AMMA^AAT 
AETaAAT«T(N)♦AA«TT 
PTTs-{ACT*PX*AC»PTX*AnT«UX*AÜ«UTX) 
UTTs-(ACT*UX*AC*UTX*ÄFT»PX*At»PTX) 
STT=-(ACT»SX*AC»STX) 
PNIN)=P(N)♦PT*ÜT*PTT»nT2 
UN(N)=U(N)-*UT«0T*UTT»nT2 
SN(N)=S(N)*ST*DT*STT«DT2 
CONTINUE 
RETURN 
END 
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APPENDIX    III     (con» t. ) 

SUBROUTINE   SHOCK 
DIMENSION   W(2)iERR(2) 

102  F0RMaT(8HÜFAlLURE) 
CsCDnT«OT*C 
MEsi 
KIPal 
^(1)=CD0T 
W|2)sl.000l«CDOT 
UN(NC)SU(NC) 
ANsA (NO 
USTaD=U{NC) 
ASTAP=A(NC) 

60 EM?=w(ME)»«2/GAMMA 
PS*{GAMMA»FM?-üO)/GE 
RS=(r,C*PS*l.)/(GC*PS) 
XXSTAR=C-(UN(NC)*USTÄR*AN*ASTAR)/2.*DT 
XSTAR={XXSTAR-B)/0 
EPSs(XSTAH-X(NA))/DX».5 
ASTAPsA(NA)*EPS«(A(Nc)-A(NA-l)) 
USTAR=U{NA)*EPS»(U(NC)-U(NA-1)) 
PSTAP=P(NA)*FPS»(P(NC)-P(NA-1)) 
UREL=-W(Mt)/QS 
UNlNr)=UREL*w(ME) 
PN(NC)=PSTÄR-6AMMA/ASTAR»(UN(NC)-USTAR) 
ANsSoRT(ÜAMMA*PS/RS) 
ERR(ME)PN(NC)-ALOG(PS) 

IF{MF.tQ.2)G0 TO 62 
ME = ? 
GO TO 60 

62 IF(ARS(ERR(ME)).LE,l,E-5)60 TO 61 
WA=wrl)-ERR(l)*(W(2)-w(l))/(ERR(2)-ERR(1)) 
ERR(i)=ERR(2) 
M((l)sW(2) 
M(2)sMA 
KIPrKlP*! 
IF(KIP.LE.20)60 TO 60 
WRlTF(6f10?) 
CALL EXIT 

61 SN(MC)sPN(NC)-ALOG(RS)*GAMMA 
CSEC=(W(ME)-CDOT)/DT 
CDOTsW(ME) 
RETURN 
END 
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